Concomitant extraspinal hyperostosis and osteoporosis in a patient with congenital ichthyosis

Niloufar Torkamani1
Pramit Phal2
Ravi Savarirayan3
Peter Simm4
George Varigos1
John Wark1

1 The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
2 Department of Radiology, Epworth Medical Imaging, Melbourne, Australia
3 Victorian Clinical Genetics Service, Murdoch Children’s Research Institute, University of Melbourne, Melbourne, Australia
4 Department of Endocrinology and Diabetes, Royal Children’s Hospital, Melbourne, Victoria, Australia

Address for correspondence:
Niloufar Torkamani
The Royal Melbourne Hospital, The University of Melbourne
Parkville, VIC, Australia
E-mail: torkamani_niloufar@yahoo.com

Summary
Ichthyosiform dermatosis is a term referred to a group of disorders that have as their basis a disorder of keratinization (1). These conditions which are present at birth result in a generalized dry, scaly skin without any inflammation. There are several types of ichthyosis based on their clinical presentation and mode of inheritance. The most common types are: ichthyosis vulgaris, X-linked recessive ichthyosis, epidermolytic hyperkeratosis (bullous), lamellar ichthyosis and non-bullous ichthyosiform erythroderma. Lamellar ichthyosis, which is inherited in an autosomal recessive pattern, shows genetic heterogeneity with the most severe type being due to mutations in the transglutaminase-1 gene. This condition presents with skin changes at birth and cases are referred to as “collodion babies”. Initially, the stratum corneum is smooth and appears as though it is covered with cellophane. This layer is discarded a few days after birth, leaving a generalized inflamed and scaly appearance. The skin is tight at this stage and may cause ectropion, and difficulties in feeding and temperature regulation. Lamellar ichthyosis is characterized by plate-like scales that last for life and can significantly impact the patient’s quality of life (2). We report here a case of multiple extraspinal hyperostoses concomitant with marked osteoporosis and vitamin D deficiency in a patient taking acitretin for 20 years due to severe congenital lamellar ichthyosis.

KEY WORDS: lamellar ichthyosis; extraspinal hyperostosis; osteoporosis; retinoids.

Clinical Cases in Mineral and Bone Metabolism 2016; 13(2):157-159
The simultaneous presence of these two paradoxical phenomena together with the fact that the nature, incidence and severity of skeletal changes with retinoids is yet to be established raises the question whether factors other than retinoids have contributed.

There is limited and conflicting evidence available regarding retinoid-related bone changes. The main effect of retinoids on the skeletal system is axial hyperostosis (4). This usually occurs with high doses of retinoids and long term treatment (>10 years). This mostly affects the cervical and thoracic spine. Retinoids have been reported to be associated with extraspinal hyperostosis as well (4). Remarkable ossification of both iliolumbar ligaments has been reported in a patient with congenital lamellar ichthyosis who had been treated with etretinate and acitretin for 10 years (5). Van Doo-ren-Greebe et al. (1995) reported ossification of the interosseous membrane in the right ankle of a patient with pityriasis rubra pilia-ris who had been treated with oral retinoids for a long time (6). Extensive periosteal hyperostoses and bridging exostosis between the left acetabulum and greater femoral trochanter has also been reported after 13 years of oral acitretin in a patient with psoriasis (7). Although the exact mechanisms for these changes are unknown they are thought to be mostly due to excess vitamin A levels (7). It would be useful to determine whether monitoring of vitamin A and insulin-like growth factor 1 levels would be informative in patients on long term retinoids in order to monitor the side effects and minimize them as retinoic acid which is the active metabolite of vitamin A controls growth hormone production by triggering its production in the GH1 pituitary cells (6, 8).

High levels of vitamin A have been shown to induce bone fragility by increasing osteoclast formation and decreasing cortical bone mass (8). Retinoids have also been suggested to have osteoporotic effects. There are inconsistent reports and studies in this area and the data remain unconvincing. While long term retinoid therapy has been shown to be associated with osteoporosis in some older studies (10, 11) more recent investigations have denied any association (12). Short term acitretin has not been shown to result in decrease in bone density (13). Isotretinoin was shown to have no effect on bone density in a recent double-blind randomized study which followed 358 teenagers for 5.5 months (14). Progressive extraspinal hyperostosis can also be seen in bone dysplasia disorders such as osteogenesis imperfecta type 5 (OI type V). OI type V, which is a rare hereditary disease associated with increasing bone fragility, is also characterized by calcification of the interosseous membranes in limbs and hyperplastic callus formation. OI type V has been shown to be associated with low bone density and patients tend to suffer recurrent fractures from an early age and as a result have short stature (15). OI type V generally presents at an early age (onset under age of 5) and late onset presentation is rare. To exclude this diagnosis genetic testing for a recurrent mutation in the 5’ UTR of the interferon induced transmembrane protein5 (IFITM5) gene which is seen in all OI type V patients will be required (15). The five gene defects associated with lamellar ichthyosis include mutations in transglutaminase 1 gene (TGM1), ABCA12, two lipoxygenase genes, ALOXE3 and ALOX12B and ichthyin (1). No association between these two conditions has been reported in our knowledge. Other differential diagnoses for hyperostosis include post-traumatic, metabolic conditions such as diabetes mellitus (16), acromegaly (17). Treatment options for osteoporosis in this patient include dietary and life style modification and vitamin D and calcium supplements. Bisphosphonates remain a potential treatment option but considering his young age, concomitant hyperostoses and lack of prior knowledge of the patient’s vitamin A and calcium status, the best treatment will be to continue monitoring the patient closely and adjust treatment accordingly.

Table 1 - Bone density studies demonstrating significant osteoporosis (BMD studies from 2012).

<table>
<thead>
<tr>
<th>Bone Density gms/cm²</th>
<th>Z score (compared with age-sex matched mean value)</th>
<th>T score (compared with young normal mean value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar spine average</td>
<td>0.684</td>
<td>-3.7</td>
</tr>
<tr>
<td>Total Hip</td>
<td>0.680</td>
<td>-2.87</td>
</tr>
<tr>
<td>Femoral neck</td>
<td>0.554</td>
<td>-3.6</td>
</tr>
</tbody>
</table>

Figure 1 - (a, b) Prominent bridging ossification within the intraosseous membrane (arrow) between the mid ulnar and radial diaphysis with an oblique orientation bilaterally. (c, d) Similar bridging ossification (arrow) was identified between the right distal fibular and tibial diaphysis (X-ray taken in 2012).
fractures, the use of this medication has currently been post-
poned to after a trial of acitretin dose reduction. When given the op-
tion of stopping acitretin or continuing treatment, the patient chose to continue treatment at a lower dose due to concerns of com-
promising treatment of the ichthyosis. Management of hyperostoses is also a challenge as the exact pathophysiology is yet to be iden-
tified. Surgical intervention is not deemed to be an effective op-
tion due to the possibility of recurrence at the operative sites and extent of lesions. Palovarotene is a new retinoic acid receptor (RAR) gamma agonist which is currently being trialed in patients with he-
terotopic ossification due to fibrodysplasia ossificans progressi-
va (FOP). Mouse models of FOP have demonstrated the ability of RAR gamma agonists to prevent heterotopic ossification (HO) following injury (18). The aforementioned trial is at early sta-
ges and possible effects of this agent on bone mineral density and bone strength is not known yet. This might be a possible treatment option to consider in the future.

References