Giant myxoid neurofibroma of the hip causing bone erosion: a case report

Federico Sacchetti1
Marco De Gori1,2
Antonio D’Arienzo1
Stefano Grossi1
Fabio Cosseddu1
Rodolfo Capanna1

1 Department of Orthopaedic and Trauma Surgery, University of Pisa, Italy
2 Department of Orthopaedic and Trauma Surgery, “Magna Graecia” University of Catanzaro, Italy

Address for correspondence:
Federico Sacchetti
Department of Orthopaedic and Trauma Surgery
University of Pisa
Via Paradisa 2
56124 Pisa, Italy
E-mail: federico.sacchetti1989@gmail.com

Summary
Myxoid neurofibroma (MN) is a rare tumor originating from the nerve sheet. It commonly occurs as a solitary cutaneous or subcutaneous mass within 5 cm of diameter; deep-seated lesions are extremely rare, unless they are associated to neurofibromatosis. We report a case of a deep-seated, sporadic, giant MN of the hip causing bone erosion. The patient was asymptomatic, being the diagnosis incidental. A soft tissue sarcoma was initially suspected on imaging basis, and the diagnosis of MN was finally carried out with a core specimen biopsy. Due to its unusual features, a total hip prosthesis is planned in order to obtain complete excision of the mass.

KEY WORDS: orthopedics; oncology; neurofibromas; bone erosion.

Introduction
Myxoid neurofibroma (MN) is a benign cutaneous or subcutaneous tumor originating from the nerve sheet. In its most frequent presentation, neurofibroma occurs as a solitary cutaneous or subcutaneous mass, that peaks between the third and fourth decades of life; still very unusual ones can be found in deep seated positions of the extremities (1). Unusual variants, i.e. massive and plexiform neurofibromas, can be described as deep lesions but exclusively associated with neurofibromatosis (NF) with nearby tissues infiltration (4, 5). Clinical presentation of localized neurofibromas usually consists of a painless slow growing mass. On magnetic resonance imaging (MRI), myxoid neurofibroma usually appears as a fusiform well defined mass that not exceed 5 cm in diameter. Sometimes, a continuity with neural structure can be seen in masses arising from the major nerves; fascicular and target signs are usually seen. Atrophy of muscle depending on the nerve involved in the lesion is not uncommon. On contrast-enhanced images, major lesion can show central, peripheral or non-homogeneous contrast enhancement (2, 3, 6). We report a case of a deep-seated, sporadic, giant MN of the hip causing bone erosion.

Case presentation
A 73-year-old male was admitted to our Institution following the accidental detection of a mass of his left thigh, discovered on MRI assessment prior to prostatectomy. Patient’s medical, developmental, and family histories were likewise unremarkable; the patient showed no sign of NF, nor satisfied clinical criteria for NF diagnosis (7). MRI showed a 145×76×67mm mass located in the anterolateral aspect of the hip, seated in a deep, juxta-articular position, with an isointense signal to muscle on T1-weighted images, a non-homogenous high signal on T2-weighted images, and a non-homogenous contrast enhancement (Figures 1, 2, 3). The neoplasm was seated laterally to the iliopsoas tendon, posteriorly to the rectus femuris muscle, medially to the vastus lateralis muscle and anteriorly to the femoral diaphysis; proximal third of the vastus intermedius muscle appeared to be involved by direct invasion or reactive edema. The mass surrounded the left femoral neck causing its thinning and a cortical erosion, thus suggesting an aggressive soft tissue sarcoma. Computed tomography (CT) scans showed a solid mass with intense contrast enhancement resulting in a thinned femoral neck and anterior cortical thickening referred to periosteal reaction (Figure 4), and bone scintigraphy showed an uptake on the left femoral neck (Figure 5). A reactive synovitis of the hip was also suspected. A core specimen biopsy was then performed, and histological examination showed a MN. Such result was discussed with the patient, and both risks and benefits of a surgical treatment were considered. A complete excision of the mass was therefore proposed, together with a total hip arthroplasty.

Discussion
We report an exceptional case of isolated, deep-seated MN that was not associated to NF1 and caused erosion of the
contiguous bone. Overall, 22 cases of isolated MNs have been reported to date (Table 1), but to the best of our knowledge only 3 of them were seated in a deep position (8, 19, 21). In all reviewed cases (8-21), surgical excision was treatment of choice, in two of them recurrence was reported (10, 19), in one case due to incomplete excision.

Two distinctive characteristics of our case are noteworthy. First, as far as we know this is the very first case of MN of...
Giant myxoid neurofibroma of the hip causing bone erosion: a case report

Figure 4 - Axial TC image where we can observe femoral neck thinning (arrow).

Figure 5 - Bone scintigraphy: uptake of left hip.

The hip even described. Moreover, this is a giant, 14-cm-long, MN, still the current available literature often refers to 5 cm as the maximum theoretical size of sporadic MNs (3). Bone erosion was reported in only one article (8), in which an intramuscular growth of a forearm MN was described; however, since no imaging is available, no further, exact data about bone involvement were provided. Differently, our radiological findings of complex, circumferential bone involvement with femoral neck deformation are extremely unusual, since sporadic MN usually is a well-defined mass that does not infiltrate nearby tissues. For the ongoing reason, our original suspicion diagnosis was inclined to a locally aggressive soft tissue sarcoma; so, our experience suggests that a “stick” femoral neck and aggressive bone invasion can also be associated to MN. Therefore, due to its variety, MN should be considered in the differential diagnoses of a large scale of clinical and radiological masses presentation. Data about this very rare and aggressive MNs should be collected in specialized centers to get more information about treatment and outcomes of this kind of neoplasms.
Table 1 - Cases of isolated MNs reported in literature.

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Site</th>
<th>Bone erosion</th>
<th>Treatment</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myxoid neurofibroma treated with Mohs micrographic surgery.</td>
<td>Trieu D et al, 2015</td>
<td>Skin/nose</td>
<td>NO</td>
<td>Surgical Excision (SE)</td>
<td>12 months Follow Up (FU) No recurrences (NR)</td>
</tr>
<tr>
<td>Solitary Myxoid Neurofibroma of the Palm.</td>
<td>Kane PM et al, 2015</td>
<td>Hand</td>
<td>NO</td>
<td>SE</td>
<td>12mFU NR</td>
</tr>
<tr>
<td>Myxoid neurofibroma of the thumb.</td>
<td>Hocar O et al, 2012</td>
<td>Thumb</td>
<td>NO</td>
<td>SE</td>
<td>18mFU NR</td>
</tr>
<tr>
<td>Solitary myxoid neurofibroma of the soft palate.</td>
<td>Choi JS et al, 2011</td>
<td>Palate</td>
<td>NO</td>
<td>SE</td>
<td>nd</td>
</tr>
<tr>
<td>Myxoid neurofibroma in a child. An asymptomatic nodule on the finger.</td>
<td>Patrizi A et al, 2011</td>
<td>Skin</td>
<td>NO</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Solitary Giant Intramuscular Myxoid Neurofibroma Resulting in an above Elbow Amputation.</td>
<td>Chennakeshaviah G et al, 2012</td>
<td>Humerus</td>
<td>YES</td>
<td>Amputation</td>
<td>nd</td>
</tr>
<tr>
<td>Isolated neurofibroma of the orbit with extensive myxoid changes: a clinicopathologic study including MRI and electron microscopic findings.</td>
<td>Kottler UB et al, 2004</td>
<td>Orbit</td>
<td>NO</td>
<td>SE incomplete?</td>
<td>24mFU Stable remnant</td>
</tr>
<tr>
<td>Periungual myxoid neurofibroma.</td>
<td>Gmyrek RF et al, 2002</td>
<td>Skin</td>
<td>NO</td>
<td>SE</td>
<td>nd</td>
</tr>
<tr>
<td>Myxoid neurofibroma of the tests.</td>
<td>Livolsi VA et al, 1977</td>
<td>Tests</td>
<td>NO</td>
<td>SE</td>
<td>nd</td>
</tr>
<tr>
<td>A rare tumor of the sciatic nerve-myxoid neurofibroma. A case report.</td>
<td>Smola MG et al, 1992</td>
<td>Sciatic nerve</td>
<td>NO</td>
<td>SE</td>
<td>24mFU No recurrences</td>
</tr>
<tr>
<td>Unusual form change of the nasal tip. Solitary, myxoid neurofibroma of the nasal tip.</td>
<td>Karapantzos I et al, 1999</td>
<td>Nasal tip</td>
<td>NO</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Myxoid neurofibroma of the renal sinus.</td>
<td>Borrego J et al, 1995</td>
<td>Renal sinus</td>
<td>NO</td>
<td>SE proposed</td>
<td>nd</td>
</tr>
<tr>
<td>Subungual myxoid neurofibroma on the thumb.</td>
<td>Baran R et al, 2001</td>
<td>Finger subungueal</td>
<td>NO</td>
<td>SE</td>
<td>nd</td>
</tr>
<tr>
<td>Myxoid neurofibroma of the nasal vestibule.</td>
<td>Knaster J et al., 1985</td>
<td>Nasal vestibule</td>
<td>NO</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Periurethral myxoid neurofibroma.</td>
<td>Eidelman A et al, 1981</td>
<td>Periurethral</td>
<td>NO</td>
<td>SE</td>
<td>1 recurrence 48 months No recurrences 72 months</td>
</tr>
<tr>
<td>Myxoid neurofibroma: an unusual presentation.</td>
<td>Ponce-Olivera RM et al, 2008</td>
<td>NO</td>
<td>SE incomplete</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Nerve sheath myxoma of the hyponychium.</td>
<td>Cribier B et al, 2013</td>
<td>Fingernail</td>
<td>NO</td>
<td>SE</td>
<td>nd</td>
</tr>
<tr>
<td>A rapidly growing benign intrathoracic neurofibroma after lung lobectomy.</td>
<td>Maeda M et al, 2000</td>
<td>Intrathoracic</td>
<td>NO</td>
<td>SE</td>
<td>12mFU NR</td>
</tr>
<tr>
<td>Benign peripheral nerve sheath tumors (neurofibromas) of the lacrimal gland.</td>
<td>McDonald P et al, 1983</td>
<td>Lacrimal gland</td>
<td>NO</td>
<td>1 SE</td>
<td>1: 24mFU NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 cases</td>
<td>2 SE</td>
<td>2: nd</td>
</tr>
</tbody>
</table>

References
Giant myxoid neurofibroma of the hip causing bone erosion: a case report


